

${ }^{1.3}$ DPAR series round cylinder

This series of round cylinder meets the standard ISO 6432, the cylinder diameter is ϕ $20 \sim \phi 40$, the cylinder adopts high precision stainless steel steel pipe, the piston rod surface is pre-rolling hardening treatment, the rod with external thread or internal thread, after hard chromium, fine grinding treatment, has good rust prevention, wear resistance and other characteristics.

DPAR	-32		$\times 50$		-PPV	A		-c
Round cylinder	(1)		(2)		(3)	(4)		(5)
(1)	-Diameter: 20253240							
(2)	\times Stroke ${ }^{11}$: $1 . .300$, Refer to Datasheet							
${ }^{3}$	-Cushion: P=Elastic cushioning pads at both ends; PPV=Cushioning, adjustable at both ends;							
(4)	Position sensing: A: With magnetic switch; None=Without magnetic switch							
(5)	-Variant							
	Piston rod		The type of piston rod thread		Cylinder type			
		One side		Male thread		Standard(With platform on both sides)	H	$\begin{aligned} & \text { Direct } \\ & \text { installation } \\ & \text { type } \end{aligned}$
	2	Through piston rod	F	Female thread	B	Flat end cover	c	Earrings are one size

Note 1) Refer to Datasheet
Datasheet[mm]

$20,25,32,40$	255075100125150160200250300	$1 . .1000$
$\begin{array}{l}\text { Please confirm the applicable trip according to the use situation. Using a cylinder with the travel } \\ \text { length shorter than the effective buffer length may cause the decrease of the With Air Cushion }\end{array}$		

lenger hay cause the decrease of the With Air Cushion
performance. Please contact the sales representative.

Technical parameter

General technical data				
Diameter $\phi \mathrm{mm}$	20	25	32	40
Standard	1506432			
Pneumatic connection	61/8	61/8	61/8	61/4
Piston rod thread	M8	M10x1.25	M10x1.25	M14x1.25
Design	Piston/piston rod/cylinder barrel			
Cushioning	Elastic cushioning rings/pads at both ends-P Cushioning, adjustable at both ends-PPV			
Position sensing ${ }^{11}$	Via magnetic switch			
Type of mounting	With accessories			
	Direct mounting			
Mounting position	Any			

Note 1) The cylinder with position sensing must travel at least 10 mm to ensure reliable sensing to customize longer travel

Operating and environmental conditions				
Diameter ϕ	20	25	32	40
Operating medium	Compressed air to ISO 8573-1:2010 [7: :4:4]			
Operating pressure MPa	$0.05 \sim 1.0$			
Ambient and fluid temperature ${ }^{\circ} \mathrm{C}$	$-20 \sim 80$ (Unfrozen)			
Corrosion resistance class	2			

-Technical parameter

Speed [mm/s]	Measurements of less than $1 \mathrm{~mm} / \mathrm{s}$ were not conducted			
Diameter ϕ	20	25	32	40
Speed with stick-slip-free operation, horizontal, without load, at 0.6 MPa (6 bar)	10.. 100		8... 100	
Minimum speed, propulsion	5.3	< 1		
Minimum speed, and retur				

Forces $[\mathrm{N}]$ and impact energy $[\mathrm{J}]$	At $80^{\circ} \mathrm{C}$, these values will decrease by about 50%			
Diameter ϕ	20	25	32	40
Theoretical force at $0.6 \mathrm{MPa}(6 \mathrm{bar})$, advancig	189	295	483	753
Theoretical force at $0.6 \mathrm{MPa}(6$ bar), retracting	158	247	415	633
Impactenergy in the end positions	0.20	0.30	0.40	0.70

Structure Diagram

Boss-cut

Air-hydro

Number	Name	Material	Note
1	Pole side cylinder head	Aluminium alloy	Anodized refined
$2 A$	The rod-free side cylinder head A A	Aluminium alloy	On both sides of the platform
$2 B$	The rod-free side cylinder head B	Aluminium alloy	Flat end cover
$2 C$	The rod-fre side Cylilider head C	Aluminium alloy	Earrings in one
3	Cylinder barrel	Stainless steel	
4	Piston	Aluminium alloy	
5	Piston rod	Carbon steel	Hard chrome plating
6	Guide sleeve	Bearing metal	

Number	Name	Material	Note
7	Buffer	Resin	Aboved $\Phi 25$ is the same
8	Buffer	Resin	
9	Wearing ring	Resin	
11	Axle sleeve used in earrings	Bearing metal	
12	Install nuts	Carbon steel	Nickelage
13	Pole end nut	Carbon steel	Zinc chromate
10	Magnet ring	-	
14	Rod seal ring	NBR	

Dimensions

Basic type (A with platform on both sides)

¢[mm]	A	AL	B_{1}	B_{2}	D	E	F	FL	G	H	H_{1}	H_{2}	1	K	KA	MM	NA	NN	P	s	zz
20	18	15.5	13	26	8	$20^{\circ} \mathrm{ass}$	13	10.5	8	41	5	8	28	5	6	M8 $\times 1.25$	24	${ }^{\text {M20 }} \times 15$	1/8	62	116
25	22	19.5	17	32	10	$26^{\circ}{ }^{\text {aps }}$	13	10.5	8	45	6	8	33.5	5.5	8	M10 $\times 1.25$	30	M26 $\times 15$	1/8	62	120
32	22	19.5	17	32	12	$26^{\circ}{ }^{\text {ans }}$	13	10.5	8	45	6	8	37.5	5.5	10	M10 $\times 1.25$	34.5	M26 $\times 1.5$	1/8	64	122
40	24	21	22	41	14	32°	16	13.5	11	50	8	10	46.5	7	12	M14 $\times 1.5$	42.5	M 32×2	$1 / 4$	88	154

	P	S	ZZ

mm	WithAirCushion	Boss-cut	Femalerod end					
Diameter	WA	ZZ	A1	H	MM	ZZ		
20	12	103	8	20	M4 $\times 0.7$	95		
25	12	107	8	20	M5 $\times 0.8$	95		
32	11	109	12	20	M6 $\times 1$	97		
40	16	138	13	21	M8 $\times 1.25$	125		

Note: For the internal thread use, please use a thin wrench to set the piston rod. Select the appropriate washer according to the workpiece material to prevent the
deformation of the rod end contact part.

Type of mounting

Integrated Clevis, one body size

Material: Anodized refined aluminum alloy

Diameter	A	AL	1	CD	CI	CX	D	E	F	FL	G	H	1	I	K	KA	L	MM	NA	NN	P	RR	S	U

With Air Cushion

Female rod end

Earrings are one size (90) (v)
-Application installation example

Diameter	LD	LF	LG	LH	LP	LT	LV	LY	LZ
20	6.8	15	30	30	37	3.2	18.4	59	152
25	6.8	15	30	30	37	3.2	18.4	59	156
32	9	15	40	40	50	4	28	75	174
40	9	15	40	40	50	4	28	75	203

Type of mounting

LB Axial foundation Type

Material: Galvanized steel

Diameter	A	AL	B	B_{1}	B_{2}	D	F	G	H	H_{1}	H_{2}	1	k	KA	LC	LD	LH	LS	LT	LX	Lz	m	NA	P	s	X	Y	z	zz
20	18	15.5	40	13	26	8	13	8	41	5	8	28	5	6	4	6.8	25	102	3.2	40	55	M8 X 1.25	24	1/8	62	20	8	21	131
25	22	19.5	47	17	32	10	13	8	45	6	8	33.5	5.5	8	4	6.8	28	102	3.2	40	55	M10 $\times 2.25$	30	1/8	62	20	8	25	135
32	22	19.5	47	17	32	12	13	8	45	6	8	37.5	5.5	10	4	6.8	28	104	3.2	40	55	M10 $\times 2.25$	34.5	1/8	64	20	8	25	137
40	24	21	54	22	41	14	16	11	50	8	10	46.5	7	12	4	7	30	134	3.2	55	75	M14×. 5	42.5	$1 / 4$	88	23	10	27	171

mm	With air cushion	Female rod end			
Diameter	WA	A1	H	MM	ZZ
20	12	8	20	M4 $\times 0.7$	110
25	12	8	20	M5 $\times 0.8$	110
32	11	12	20	M6 $\times 1$	112
40	16	13	21	$M 8 \times 1.25$	142

- Type of mounting

FA Front Flange Type

mm	Boss-cut	With Air Cushion	Female rod end									
Diameter	ZZ	WA	A1	H	MM	ZZ						
20	103	12	8	20	M4 $\times 0.7$	95						
25	107	12	8	20	$\mathrm{M} 5 \times 0.8$	95						
32	109	11	12	20	$\mathrm{M} 6 \times 1$	97						
40	138	16	13	21	$\mathrm{M} 8 \times 1.25$	125						

Type of mounting

FB Rear Flange Type

Material: Galvanized steel

 | 25 | 22 | 19.5 | 40 | 17 | 32 | 37 | 10 | 26_{0033}^{0} | 13 | 10.5 | 7 | 4 | 60 | - | 75 | 8 | 45 | 6 | 8 | 33.5 | 5.5 | 8 | $\mathrm{M} 10 \times 1.25$ | 30 | $\mathrm{M} 26 \times 1.5$ | $1 / 8$ | 62 | 111 | 120 |
| :--- |

	With Air Cushion	Female rod end			
Diameter	WA	A1	H	MM	ZZ
20	12	8	20	M4 $\times 0.7$	95
25	12	8	20	M5 $\times 0.8$	95
32	11	12	20	M6 $\times 1$	97
40	16	13	21	M8 $\times 1.25$	125

- Type of mounting

Rod-side ear shaft type (TA)

Material: Cast iron without electrolytic nickel plating

Diameter	A	AL	B1	B2	D	E	F	FL	G	H	H1	I	K	KA	MM	NA	NN	P	S	TD	TT	TX	TV	TZ	Z	ZZ

Boss-cut

Type of mounting
Head Trunnion (TB)
Material: Cast iron without electrolytic nickel plating

Diameter	A	AL	B_{1}	B_{2}	D	E	F	FL	G	H	H_{1}	1	K	KA
20	18	15.5	13	26	8	$20^{\circ}{ }_{\text {Oens }}$	13	10.5	8	41	5	28	5	6
25	22	19.5	17	32	10	$26^{\circ}{ }^{\text {oug }}$	13	10.5	8	45	6	33.5	5.5	8
32	22	19.5	17	32	12	$26^{\circ}{ }^{\text {ous }}$	13	10.5	8	45	6	37.5	5.5	10
40	24	21	22	41	14	$32^{\circ}{ }_{\text {oase }}$	16	13.5	11	50	8	46.5	7	12

Diameter	MM	NA	NN	P	S	TD	TT	TX	TY	TZ	Z	ZZ
20	M 8×1.25	24	M 20×1.5	$1 / 8$	62	8	10	32	32	52	108	118
25	M 10×1.25	30	M 26×1.5	$1 / 8$	62	9	10	40	40	60	112	122
32	$M 10 \times 1.25$	34.5	M26 1.5	$1 / 8$	64	9	10	40	40	60	114	124
40	$M 14 \times 1.5$	42.5	M 32×2	$1 / 4$	88	10	11	53	53	77	143.5	154

- Type of mounting

Direct installation type H

Diameter	Stroke range	A	AL	B	B_{1}	D	GA	GB	H	H_{1}	I	K	KA	L
20	$1 \sim 150$	18	15.5	30.3	13	8	22	8	27	5	28	5	6	33.5
25	$1 \sim 200$	22	19.5	36.3	17	10	22	8	31	6	33.5	5.5	8	39
32	$1 \sim 200$	22	19.5	42.3	17	12	22	8	31	6	37.5	5.5	10	47
40	$1 \sim 300$	24	21	52.3	22	14	27	11	34	8	46.5	7	12	58.5

Diameter	Stroke range	LD	나	Lx	Mм	N	ND	P	s	x	Y	zz
20	1~150	95.5. 99.5 sink depth 6.5	15	21	M8 $\times 1.25$	24	$20^{0} 0$	1/8	76	39	12	103
25	1~200	ه6.6, 811 sink depth 7.5	18	25	M10 $\times 1.25$	30	$26^{\circ}{ }_{\text {O23 }}$	1/8	76	43	12	107
32	1-200	09. $\varnothing 14$ sink depth10	21	30	M10 $\times 1.25$	34.5	$26^{\circ}{ }^{\text {0033 }}$	1/8	78	43	12	109
40	1-300	${ }_{\text {ه11, }}$ ¢17.5 sink depth12.5	26	38	M14 $\times 1.5$	42.5	$32^{\circ} \mathrm{O}$ 093	$1 / 4$	104	49	15	138

Type of mounting
Clevis foot N-For Integrated Cleviss and one body shape
Material: Carbon steel galvanized

Diameter	L	LC	LD	LE	LF	LG	LH	LR	LT	LX	LY	LV	Dd9	d	L1	L2	m	t
20,25	24.5	8	6.8	22	15	30	30	10	3.2	12	59	18.4	$8^{.000096}$	7.6	24.5	19.5	1.6	0.9
32,40	34	10	9	25	15	40	40	13	4	20	75	28	10.00007	9.6	34	29	1.35	1.15

Ear shaft assembly U/T

Ear shaft: no electrolytic nickel plating for cast ron
Swing base (mounting part): steel nickel plating

(Q

Peripherals overview

Accessories

- Pole end

Name	Diameter \varnothing	Code	Name	Diameter \varnothing	Code
Y joint			I joint		
	20	Y-M8×1.25		20	I-M8×1.25
	25,32	Y -M10 $\times 1.25$		25, 32	I-M10 1.25
	40	I-M14×1.25		40	I-M14×1.25

-C Magnetic switch

Magnetic switch is used for T-groove (With switch mounting assembly)						
	Type of mounting	Switching output	Connection	Cable length m	Type	For Diameter ϕ
Normal open						
$\underline{\underline{\underline{\underline{l}}}}$	Tighten the hoop and screws	PNP	Magnetoresistive, 3-wire	1.3	CDX-15P-1.3	20-40
		NPN	Magnetoresistive, 3-wire	1.3	CDX-15N-1.3	
		R	Tongue spring type, 2-wire	1.3	CDX-15R-1.3	
				2.5	CDX-15R-2.5	

